

www.cncdata.co.uk 1

Although subprograms are useful for repeating the same operation, the custom
macro function also allows use of variables, arithmetic and logic operations, and
conditional branches for easy development of general programs such as
pocketing and user–defined canned cycles. A machining program can call a
custom macro with a simple command, just like a subprogram, the only
difference being; we can pass information into the sub program and manipulate it
as we want.

O0001;
;
;
G65 P9010 A1. B26. F500.
;
;
M30;

O9010;
G91;
N100 #101=#2/2
G#1 G42 X#101 Y#1 F#9
IF[#5021LT100]GOTO100;
M99;

Main Program Sub Program

 Local & Common Variables > Introduction

www.cncdata.co.uk 2

In the world of Macro B, everything revolves around variables, that is because
90% of the information visible on a Fanuc control, has its own variable address,
these are called System Variables. Fanuc has also given the end user its own set
of variables, two types, local and common, located: [OFFSET] – {MACRO} (see
page 5).

Here are some of the System variables available:

• Tool Offsets
• Work Offsets
• Axis Positions
• Modal Information
• PMC Signals
• Alarms
• Automatic Operation Control
• Timers and Counters

Plus many more

An ordinary machining program specifies a G code and the travel distance
directly with a numeric value; examples are G01 X100.0
With a custom macro, numeric values can be specified directly or using a
variable number. When a variable number is used, the variable value can be
changed by a program or using operations on the MDI panel.

When specifying a variable, specify a number sign (#) followed by a variable
number. General–purpose programming languages allow a name to be assigned
to a variable, but this capability is only available for custom macros on a 30xi
Series.
Example: #1
An expression can be used to specify a variable number. In such a case, the
expression must be enclosed in brackets.
Example: #[#1+#2–12]

#2=0
#1=#2+100;
G01 X#1 F200;

 Local & Common Variables > Local & Common Variable

www.cncdata.co.uk 3

Variables are classified into four into four different types.

Variable number Type of variable Function
#0 Always null This variable is always null. No value can

be assigned to this variable. It is not a
value, it is nothing/empty/null.

#1 – #33 Local variables Local variables can only be used within a
macro to hold data such as the results of
operations. When the power is turned off,
local variables are initialized to null. When a
macro is called, arguments are assigned to
local variables. These should only be used
to pass values, not for calculations

#100 – #149 (#199)
#500 - #531 (#999)

Common Variables Common variables can be shared among
different macro programs. When the power
is turned off, variables #100 to #149 are
initialized to null. Variables #500 to #531
hold data even when the power is turned
off. As an option, common variables #150
to #199 and #532 to #999 are also
available.

#1000 + System variables System variables are used to read and
write a variety of NC data items such as
the current position and tool compensation
values.

Range of Variables:

Note
Common variables #150 - #199 and #532 - #999 are a purchasable option from
Fanuc GE (J887)

Local and common variables can have value 0 or a value in the
following ranges:
–1047 to –10–29
0
10–29 to 1047

If the result of calculation turns out to be invalid, a P/S alarm
No. 111 is issued.

No decimal point is required with variables.
Example
When #1=123; is defined, the actual value of variable #1 is
123.000.

 Local & Common Variables > Local & Common Variables

www.cncdata.co.uk 4

When the value of a variable is not defined, such a variable is referred to as a
“null” variable. Variable #0 is always a null variable. It cannot be written to, but it
can be read. If you look at variables #100 - #149 they are empty, this is written as
#0.

When an undefined variable is quoted, the address itself is also ignored

When #1 = < vacant > When #1 = 0

G01 X100 Y #1

G01 X100

G01 X100 Y #1

G01 X100 Y0

When < vacant > is the same as 0 except when replaced by < vacant>

When #1 = < vacant > When #1 = 0

#2 = #1

#2 = < vacant >

#2 = #1

#2 = 0

#2 = #1*5

#2 = 0

#2 = #1*5

#2 = 0

#2 = #1+#1

#2 = 0

#2 = #1 + #1

#2 = 0

 Local & Common Variables > Examples of Variables

www.cncdata.co.uk 5

< vacant > differs from 0 only for EQ and NE.
When #1 = < vacant > When #1 = 0

#1 EQ #0 #1 EQ #0

Established Not established
#1 NE 0 #1 NE 0

Established Not established
#1 GE #0 #1 GE #0

Established Established

Conditions Expressions
EQ EQUAL
NE NOT EQUAL TOO
LT LESS THAN
LE LESS THAN OR EQUAL TOO
GT GREATER THAN
GE GREATER THAN OR EQUAL TOO

To display the macro variables press [OFFSET] – {MACRO}

If ******** is displayed then an overflow has occurred. An overflow means the
variable is either greater than 99999999 or less than 0.00000001.

 Local & Common Variables > Examples of Variables

www.cncdata.co.uk 6

System variables can be used to read and write internal NC data such as tool
compensation values and current position data. Note, however, that some
system variables can only be read. System variables are essential for automation
and general–purpose program development.

Interface signals can be exchanged between the programmable machine
controller (PMC) and custom macros. In order to use these variables the PMC
must be programmed to do this. PMC’s should only be written or modified by
MTB’s. Do not alter your PMC.

For detailed information, refer to the connection manual (B–63523EN–1).

Variable
number Function

#1000–#1015
#1032

A 16–bit signal can be sent from the PMC to a custom
macro. Variables #1000 to #1015 are used to read a
signal bit by bit. Variable #1032 is used to read all 16
bits of a signal at one time.

#1100–#1115
#1132

A 16–bit signal can be sent from a custom macro to the
PMC. Variables #1100 to #1115 are used to write a
signal bit by bit. Variable #1132 is used to write all 16
bits of a signal at one time.

#1133 Variable #1133 is used to write all 32 bits of a signal at
one time from a custom macro to the PMC.

 System Variables > PMC Variables

www.cncdata.co.uk 7

Tool compensation values can be read and written using system variables.
Usable variable numbers depend on the number of compensation pairs, whether
a distinction is made between geometric compensation and wear compensation,
and whether a distinction is made between tool length compensation and cutter
compensation. When the number of compensation pairs is not greater than 200,
variables #2001 to #2400 can also be used.

System Variables for Tool Compensation Memory A

Compensation Number System Variable

1
:

200
:

999

#10001(#2001)
:

#10200(#2200)
:

#10999

System Variables for Tool Compensation Memory B

Compensation Number Wear Compensation

1
:

200
:

999

#10001(#2001)
:

#10200(#2200)
:

#10999

Geometry Compensation

#11001(#2201)
:

#11200(#2400)
:

#11999

System Variables for Tool Compensation Memory C

Compensation

Number

Cutter Compensation (D)

1
:

200
:

999

#10001(#2001)
:

#10200(#2200)
:

#10999

Tool Length Compensation (H)

#11001(#2201)
:

#11200(#2400)
:

#11999

Geometric
Compensation

Wear
Compensation

Geometric
Compensation

Wear
Compensation

#13001
:

#13200
:

#13999

#12001
:

#12200
:

#12999

 System Variables > Tooling Variables

www.cncdata.co.uk 8

If the control being used has memory C (below) and we want to read the length
of Tool 1 into common variable 100, we need:

#100=#11001

The value of specified in the offset table for the length of tool 1 is now input into
variable 100.

#100=#11001

 System Variables > Tooling Variables

www.cncdata.co.uk 9

Using system variables we can make the machine stop instantly and display a
custom message. When a value from 0 to 200 is assigned to variable #3000,
the CNC stops with an alarm. After an expression, an alarm message not longer
than 26 characters can be described. The CRT screen displays alarm numbers
by adding 3000 to the value in variable #3000 along with an alarm message.

Example:

#3000=1(TOOL LIFE EXPIRED)

If you program #3000=23 (TOOL LIFE EXPIRED) then “3023 TOOL LIFE
EXPIRED” is dispalyed.

 System Variables > Alarms

www.cncdata.co.uk 10

Operator messages are a good way of letting the operator know what is going on
in the program and also any checks or inspections they need to make.
When “#3006=1 (MESSAGE);” is commanded in the macro, the program
executes blocks up to the immediately previous one and then stops.
When a message of up to 26 characters, which is enclosed by a control–in
character (“(”) and control–out character (“)”), is programmed in the same block,
the message is displayed on the external operator message screen. The
message can be cleared with #3006=0.

#3006=1(CHECK COMPONENT SEATED)

 System Variables > Messages

www.cncdata.co.uk 11

Information regarding time, whether is be the actual time or time to complete
something, this can be read using system variables.

System Variables for Time Information
Variable
number Function

#3001 This variable functions as a timer that counts in 1–millisecond
increments at all times. When the power is turned on, the value
of this variable is reset to 0. When 2147483648 milliseconds is
reached, the value of this timer returns to 0.

#3002 This variable functions as a timer that counts in 1–hour
increments when the cycle start lamp is on. This timer
preserves its value even when the power is turned off. When
9544.371767 hours is reached, the value of this timer returns to
0.

#3011 This variable can be used to read the current date (year/month/
day). Year/month/day information is converted to an apparent
decimal number. For example, September 28, 2001 is
represented as 20010928.

#3012 This variable can be used to read the current time (hours/min-
utes/seconds). Hours/minutes/seconds information is converted
to an apparent decimal number. For example, 34 minutes and
56 seconds after 3 p.m. is represented as 153456.

As #3001 is constantly running, if we want to use it then we must reset it first.

Example:

#3001=0;
M98 P1000 (CONTOURING CYCLE);
#500=#3001;
#500=#500/1000;

Using these functions it is possible to calculate things such as:

• The percentage of the shift the machine was actually in cycle.
• Cycle time.
• Downtime.

 System Variables > Timers and Counters

www.cncdata.co.uk 12

Using system variables we are able to disable and enable program control
functions such as:

• SINGLE BLOCK
• FEED RATE OVERRIDE
• FEED HOLD
• EXACT STOP

These groups of variables are called Automatic Operation Control.

System Variable (#3003) for Automatic Operation Control
#3003 Single block Completion of an auxiliary function

0 Enabled To be awaited
1 Disabled To be awaited
2 Enabled Not to be awaited
3 Disabled Not to be awaited

Example:

#3003=3 – single block is instantly disabled.

#3003=2 – single block is instantly enabled.

When using this variable, there are a few things to be aware of:

• When the power is turned on, the value of this variable is 0.
• When single block stop is disabled, single block stop operation is not

performed even if the single block switch is set to ON.
• When a wait for the completion of auxiliary functions (M, S, and T

functions) is not specified, program execution proceeds to the next
block before completion of auxiliary functions. Also, distribution
completion signal DEN is not output.

 System Variables > Automatic Operation Control

www.cncdata.co.uk 13

System Variable (#3004) for Automatic Operation Control

#3004 Feed hold Feed Rate Override Exact stop
0 Enabled Enabled Enabled
1 Disabled Enabled Enabled
2 Enabled Disabled Enabled
3 Disabled Disabled Enabled
4 Enabled Enabled Disabled
5 Disabled Enabled Disabled
6 Enabled Disabled Disabled
7 Disabled Disabled Disabled

Example:

#3004=2 – this will only disable the Feed rate override.

When using this variable, there are a few things to be aware of:

• When the power is turned on, the value of this variable is 0.
• When feed hold is disabled:

(1) When the feed hold button is held down, the machine stops in the
single block stop mode. However, single block stop operation is not
performed when the single block mode is disabled with variable #3003.
(2) When the feed hold button is pressed then released, the feed hold
lamp comes on, but the machine does not stop; program execution
continues and the machine stops at the first block where feed hold is
enabled.

• When feed rate override is disabled, an override of 100% is always
applied regardless of the setting of the feed rate override switch on the
machine operator’s panel.

• When exact stop check is disabled, no exact stop check (position check) is
made even in blocks including those which do not perform
cutting.

O0001 ;
N1 G00 G90 X#24 Y#25
;
N2 Z#18 ;
G04 ;
N3 #3003=3 ;
N4 #3004=7 ;
N5 G01 Z#26 F#9 ;
N6 M04 ;
N7 G01 Z#18 ;
G04 ;
N8 #3004=0 ;
N9 #3003=0 ;
N10M03 ;

 System Variables > Automatic Operation Control

www.cncdata.co.uk 14

The image above is a screen shot of a standard Fanuc program display.
Below the axis positioning you can see the MODAL information. Modal means
active G code or active commands. Everything except the actual spindle speed in
the red ring can be read.

#4001 #4007 #4013

#4002 #4008 #4014

#4003 #4009 #4015

#4004 #4010 #4016

#4005 #4011 #4017

#4006 #4012 #4018

#4109

 #4111

 #4107

 #4119

 #4120

 #4113

 System Variables > Modal Information

www.cncdata.co.uk 15

System Variables for Modal Information

Variable
Number Function Group

#4001 G00, G01, G02, G03, G33 Group 1
#4002 G17, G18, G19 Group 2
#4003 G90, G91 Group 3
#4004 Group 4
#4005 G94, G95 Group 5
#4006 G20, G21 Group 6
#4007 G40, G41, G42 Group 7
#4008 G43, G44, G49 Group 8
#4009 G73, G74, G76, G80–G89 Group 9
#4010 G98, G99 Group 10
#4011 G98, G99 Group 11
#4012 G65, G66, G67 Group 12
#4013 G96,G97 Group 13
#4014 G54–G59 Group 14
#4015 G61–G64 Group 15
#4016 G68, G69 Group 16

: : :
#4022 Group 22
#4102 B code
#4107 D code
#4109 F code
#4111 H code
#4113 M code
#4114 Sequence number
#4115 Program number
#4119 S code
#4120 T code

Example:

When #1=#4001; is executed, the resulting value in #1 is 0, 1, 2, 3, or 33.
If the specified system variable for reading modal information corresponds to a G
code group that cannot be used, a P/S alarm is issued.

 System Variables > Modal Information

www.cncdata.co.uk 16

Position information can be read but not written.

System Variables for Positioning Information

Variable number Position
information

Coordinate
system

Tool
compensation

value

Read
operation

during
movement

#5001–#5008 Block end point Workpiece
coordinate
system

Not included Enabled

#5021–#5028 Current position Machine
coordinate
system

Included Disabled

#5041–#5048 Current position Workpiece
coordinate
system #5061–#5068 Skip signal

position
Enabled

#5081–#5088 Tool length
offset value

 Disabled

#5101–#5108 Deviated servo
position

The first digit (from 1 to 8) represents an axis number.

Here the axis numbers are as follow:
X=1
Y=2
Z=3
A=4
C=5

Always follow this rule or check
parameter 1022.

#5021
#5022
#5023
#5024
#5025

Here the absolute positions are shown
as there variable numbers:
X=#5021
Y=#5022
Z=#5023
A=#5024
C=#5025

 System Variables > Positioning Information

www.cncdata.co.uk 17

Using system variables, zero offset (datum) positions can be read and written
too.

Variable
number Function

#5201 First–axis external workpiece zero point offset value
: :

#5208 Eighth–axis external workpiece zero point offset value
#5221 First–axis G54 workpiece zero point offset value

: :
#5228 Eighth–axis G54 workpiece zero point offset value
#5241 First–axis G55 workpiece zero point offset value

: :
#5248 Eighth–axis G55 workpiece zero point offset value
#5261 First–axis G56 workpiece zero point offset value

: :
#5268 Eighth–axis G56 workpiece zero point offset value
#5281 First–axis G57 workpiece zero point offset value

: :
#5288 Eighth–axis G57 workpiece zero point offset value
#5301 First–axis G58 workpiece zero point offset value

: :
#5308 Eighth–axis G58 workpiece zero point offset value
#5321 First–axis G59 workpiece zero point offset value

: :
#5328 Eighth–axis G59 workpiece zero point offset value

To use variables #2500 to #2806 and #5201 to #5328, optional variables for the
workpiece coordinate systems are necessary.
Optional variables for 48 additional workpiece coordinate systems are #7001 to
#7948 (G54.1 P1 to G54.1 P48).
Optional variables for 300 additional workpiece coordinate systems are #14001
to #19988 (G54.1 P1 to G54.1 P300).
With these variables, #7001 to #7948 can also be used.

Check the Fanuc operator manual with the machine for additional variables.

 System Variables > Work Offset Information

www.cncdata.co.uk 18

The following variables can also be used to read and write zero offset positions.

Axis Function Variable number
First axis External workpiece zero point offset #2500 #5201
 G54 workpiece zero point offset #2501 #5221
 G55 workpiece zero point offset #2502 #5241
 G56 workpiece zero point offset #2503 #5261
 G57 workpiece zero point offset #2504 #5281
 G58 workpiece zero point offset #2505 #5301
 G59 workpiece zero point offset #2506 #5321
Second External workpiece zero point offset #2600 #5202
axis G54 workpiece zero point offset #2601 #5222
 G55 workpiece zero point offset #2602 #5242
 G56 workpiece zero point offset #2603 #5262
 G57 workpiece zero point offset #2604 #5282
 G58 workpiece zero point offset #2605 #5302
 G59 workpiece zero point offset #2606 #5322
Third axis External workpiece zero point offset #2700 #5203
 G54 workpiece zero point offset #2701 #5223
 G55 workpiece zero point offset #2702 #5243
 G56 workpiece zero point offset #2703 #5263
 G57 workpiece zero point offset #2704 #5283
 G58 workpiece zero point offset #2705 #5303
 G59 workpiece zero point offset #2706 #5323
Fourth axis External workpiece zero point offset #2800 #5204
 G54 workpiece zero point offset #2801 #5224
 G55 workpiece zero point offset #2802 #5244
 G56 workpiece zero point offset #2803 #5264
 G57 workpiece zero point offset #2804 #5284
 G58 workpiece zero point offset #2805 #5304
 G59 workpiece zero point offset #2806 #5324

 System Variables > Work Offset Information

www.cncdata.co.uk 19

The operations listed in the table below can be performed on variables. The
expression to the right of the operator can contain constants and/or variables
combined by a function or operator. Variables #j and #K in an expression can be
replaced with a constant. Variables on the left can also be replaced with an
expression.

Function Format Remarks
Definition #i=#j
Sum #i=#j+#k;

Difference #i=#j–#k;
Multiply #i=#j*#k;
Divide #i=#j/#k;
Sine #i=SIN[#j]; An angle is specified in de-

grees. 90 degrees and 30
minutes is represented as
90.5 degrees.

Arcsine #i=ASIN[#j];
Cosine #i=COS[#j];
Arccosine #i=ACOS[#j];
Tangent #i=TAN[#j];
Arctangent #i=ATAN[#j]/[#k];
Square root #i=SQRT[#j];

Absolute value #i=ABS[#j];
Rounding off #i=ROUND[#j];
Rounding down #i=FIX[#j];
Rounding up #i=FUP[#j];
Natural logarithm #i=LN[#j];
Exponential function #i=EXP[#j];
OR #i=#j OR #k; A logical operation is per-

formed on binary numbers
bit by bit.

XOR #i=#j XOR #k;
AND #i=#j AND #k;
Conversion from BCD to BIN #i=BIN[#j]; Used for signal exchange to

and from the PMC Conversion from BIN to BCD #i=BCD[#j];

 Functions > Function List

www.cncdata.co.uk 20

Definition - #i=#j
This is what’s used to transfer data from one variable to another. The left variable
is where the result is.
So if #1=10 and #2=12
#1=#2
Both variables now equal 12.

Sum - #i=#j+#k
This is what’s used to add variables, or values on their own together.
So if #2=12
#1=#2+10
The value of #1 is now 22.

Difference - #i=#j-#k
This is what’s used to subtract variables, or values on their own together.
So if #2=12
#1=#2-10
The value of #1 is now 2.

Multiply - #i=#j*#k
This is what’s used to multiply variables, or values on their own together.
So if #2=12
#1=#2*10
The value of #1 is now 120.

Divide - #i=#j/#k
This is what’s used to divide variables, or values on their own together.
So if #2=20
#1=#2/10
The value of #1 is now 2.

All of the above can be put together using brackets to perform larger calculations.
So if #1=2 and #2=5
#100=#1*[#2-3]
The value of #100 is now 4, because 2 x (5 – 3) = 4

For more information on the priority of operations when using brackets see page
23. Macro B also conforms to the Precedence Rule.

 Functions > Function Descriptions

www.cncdata.co.uk 21

In Macro B, Sine, Cosine and Tangent follow the same pattern.

Sine #i=SIN[#j];
Tangent #i=TAN[#j];
Cosine #i=COS[#j];

In the example above, #1=30 and #2=50

In mathematics the equation to calculate the length of:

X is (cos30) x 50 = 43.301
 Y is (sin30) x 50 = 25

In Macro B it’s the same
 X is #100=[cos[#1]*#2]
 Y is #101=[sin[#1]*#2]

To actually move the axis incrementally the result of this calculation we can write
the following:
 G1 G91 X[cos[#1]*#2] Y[sin[#1]*#2]

 Or

 #100=[cos[#1]*#2]
 #101=[sin[#1]*#2]
 G1 G91 X#100 Y#101

It is a good idea to use a Zeus book if you’re unsure of the formulae.

Arcsine, Arccosine and Arctangent are inverse trigonometric functions of Sine,
Cosine and Tangent.

There are sme parameters related to Arcsine, Arccosine and Arctangent, for
further details see the manual B–63534EN

30°

50

#1

#2

X X

Y Y

 Functions > Function Examples

www.cncdata.co.uk 22

Round Function - #i=ROUND[#j];
When the ROUND function is included in an arithmetic or logic operation
command, IF statement, or WHILE statement, the ROUND function rounds off at
the first decimal place.
When #1=ROUND[#2]; is executed where #2 holds 1.2345, the value
of variable #1 is 1.0.

Rounding Up and Down - #i=FUP[#j] & #i=FIX[#j]
With CNC, when the absolute value of the integer produced by an operation on a
number is greater than the absolute value of the original number, such an
operation is referred to as rounding up to an integer.
Conversely, when the absolute value of the integer produced by an operation on
a number is less than the absolute value of the original number, such an
operation is referred to as rounding down to an integer.
Be particularly careful when handling negative numbers.

Suppose that #1=1.2 and #2=–1.2.

When #3=FUP[#1] is executed, 2.0 is assigned to #3.
When #3=FIX[#1] is executed, 1.0 is assigned to #3.
When #3=FUP[#2] is executed, –2.0 is assigned to #3.
When #3=FIX[#2] is executed, –1.0 is assigned to #3.

 Functions > Function Examples

www.cncdata.co.uk 23

When programming larger calculations, it is important to make sure your
calculations are in the correct order, this is called the Priority of Operations.

The priority of operation for Macro B statements is as follows:

1. Functions
2. Operations such as multiplication and division (*,/,AND)
3. Operations such as addition and subtraction (+,-,OR,XOR)

Example

 #1=#2+#3*sin[#4]

Brackets are used to change the order of operations. Brackets can be used to a
depth of five levels including the brackets used to enclose a function.
When a depth of five levels is exceeded, P/S alarm No. 118 occurs.

 #1=sin[[#2+#3]*#4+#5]*#6]

 1

 2

 3

1,2 and 3 indicate the order of
operations.

 1

 2

 3

 4

 5

1,2,3,4 and 5 indicate the order of
operations.

 Functions > Function Rules

www.cncdata.co.uk 24

Brackets ([,]) are used to enclose an expression. Note that parentheses (,)are
used for comments.
Errors may occur when operations are performed.

1 The relative error depends on the result of the operation.
2 Smaller of the two types of errors is used.
3 The absolute error is constant, regardless of the result of the
operation.
4 Function TAN performs SIN/COS.
5 If the result of the operation by the SIN, COS, or TAN
 function is less than 1.0 x 10–8 or is not 0 because of the
 precision of the operation, the result of the operation can be
 normalized to 0 by setting bit 1 (MFZ) of parameter No. 6004
 to 1.

The precision of variable values is about 8 decimal digits. When very large
numbers are handled in an addition or subtraction, the expected results may not
be obtained.
Example:
When an attempt is made to assign the following values to variables

#1 and #2:
#1=9876543210123.456
#2=9876543277777.777
the values of the variables become:
#1=9876543200000.000
#2=9876543300000.000

In this case, when #3=#2–#1; is calculated, #3=100000.000 results.
(The actual result of this calculation is slightly different because it is
performed in binary.)

When a divisor of zero is specified in a division or TAN[90], P/S alarm No. 112
occurs.

 Functions > Function Rules

www.cncdata.co.uk 25

The following blocks are referred to as macro statements:
• Blocks containing an arithmetic or logic operation (=)
• Blocks containing a control statement (such as GOTO, DO, END)
• Blocks containing a macro call command (such as macro calls by G65,

G66, G67, or other G codes, or by M codes)
Any block other than a macro statement is referred to as an NC statement.

Differences from NC Statements
Even when single block mode is on, the machine does not stop. Note,
however, that the machine stops in the single block mode when bit 5
of parameter SBM No. 6000 is 1.

Macro blocks are not regarded as blocks that involve no movement in
the cutter compensation mode (seeII–15.7).

NC statements that have the same property as macro statements
NC statements that include a subprogram call command (such as
subprogram calls by M98 or other M codes, or by T codes) and not
include other command addresses except an O,N or L address have the
same property as macro statements.

The blocks not include other command addresses except an O,N,P or
L address have the same property as macro statements.

 Macro Statements > Definitions

www.cncdata.co.uk 26

If the condition
is not satisfied

In a program, the flow of control can be changed using the GOTO statement and
IF statement. Three types of branch and repetition operations are used:

Branch and Repetition GOTO statement (unconditional branch)
 IF statement (conditional: IF…,THEN…)
 WHILE statement (repetition)

Unconditional Branch (GOTO Statement)

IF[<conditionalexpression>]GOTOn

A conditional expression must include an operator inserted between two
variables or between a variable and constant, and must be enclosed in
brackets ([,]). An expression can be used instead of a variable.

Specify a conditional expression after IF.

If the specified conditional expression is satisfied,
a branch to sequence number n occurs. If the
specified condition is not satisfied, the next block
is executed.

Unconditional Branch
(GOTO Statement)

IF[<conditional
expression>]GOTOn

If the value of variable #100 is not equal to 20, a branch to sequence
number N5 occurs.

IF[#100 NE 20] GOTO 5

Processing

N5 G0 G54 X50.

If the condition is
satisfied

IF[<conditional
expression>]THEN

If the specified conditional expression is
satisfied, a predetermined macro
statement is executed.
Only a single macro statement is executed.

If #1 is empty (no value in it), then the following statement is satisfied.

IF[#1EQ#0] THEN #3000=1(TOOL NOT ENGAGED);

 Macro Statements > GOTO

www.cncdata.co.uk 27

Operators each consist of two letters and are used to compare two values to
determine whether they are equal or one value is smaller or greater than the
other value. Note that the inequality sign cannot be used.

Operator Meaning
EQ Equal to(=)
NE Not equal to()
GT Greater than(>)
GE Greater than or equal to()
LT Less than(<)
LE Less than or equal to()

The sample program below finds the total of numbers 1 to 10.

O9500;
#1=0; Initial value of the variable to hold the sum
#2=1; Initial value of the variable as an addend
N1 IF[#2 GT 10] GOTO 2; . . Branch to N2 when the addend is greater than 10
#1=#1+#2; Calculation to find the sum
#2=#2+1; Next addend
GOTO 1; Branch to N1
N2 M30; End of program

 Macro Statements > IF Statement

www.cncdata.co.uk 28

If the condition
is not satisfied

If the condition
is satisfied

Repetition
(WHILE statement)

While the specified condition is satisfied, the program from DO to END after
WHILE is executed. If the specified condition is not satisfied, program execution
proceeds to the block after END. The same format as for the IF statement
applies. A number after DO and a number after END are identification numbers
for specifying the range of execution. The numbers 1, 2, and 3 can be used.
When a number other than 1, 2, and 3 is used, P/S alarm No. 126 occurs.

The sample program below finds the total of numbers 1 to 10.

 O0001;

#1=0;
#2=1;
WHILE[#2 LE 10]DO 1;
#1=#1+#2;
#2=#2+1;
END 1;
M30;

Specify a conditional expression after WHILE.
While the specified condition is satisfied, the
program from DO to END is executed. If the
specified condition is not satisfied, program
execution proceeds to the block after END.

WHILE [conditional expression] DO n (n=1,2,3)

Processing

END n

 Macro Statements > WHILE Statement

www.cncdata.co.uk 29

The identification numbers (1 to 3) in a DO–END loop can be used as many
times as desired. Note, however, when a program includes crossing repetition
loops (overlapped DO ranges), P/S alarm No. 124 occurs.

The identification numbers (1 to 3)
can be used as many times as
required.

DO loops can be nested to a
maximum depth of three levels.

WHILE […] DO 1;

Processing

END 1;
 :

WHILE […] DO 1;

Processing

END 1;

DO ranges cannot over lap.

WHILE […] DO 1;

Processing

END 1;

WHILE […] DO 2;

Processing

END 1;

WHILE […] DO 3;
Processing

END 3;

WHILE […] DO 2;

END 2;

WHILE […] DO 1;

END 2;

 :

 :

 :

 :

Control can be transferred to the
outside of a loop.

WHILE […] DO 1;

Processing

END 1;

IF […] GOTO n;

Processing

Nn;

 Macro Statements > Rules & Limitations

www.cncdata.co.uk 30

Macro Call

Both G65 and M98 will call up and open a subprogram.

The main difference between a Macro Call (G65) and a subprogram call (M98) is
that G65 can pass information from the G65 line into a subprogram as variables.

When an M98 block contains another NC command (for example, G01 X100.0
M98Pp), the subprogram is called after the command is executed. On the other
hand, G65 unconditionally calls a macro.

Think of a normal canned cycle as a macro call(G81 – Drilling). The information
you specify (example X and Y coordinates, depth of hole, return point, etc) is
then passed into a macro program, the data is manipulated, that then drills your
holes. This is what happens on CNC controls, but as Fanuc or the MTB have
written the cycles, they have also hidden all the “behind the scenes” activities. It
is also possible in to do this, once the Macro is complete.

Macro Call Simple call (G65)
 Modal call (G66,G67)
 Macro call with G code
 Macro call with M code
 Subprogram call with M code
 Subprogram call with T code

A macro program can be called using the following
methods:

G65 P9010 X10 Y15 Z-10 R2

#24 #25 #26 #18
#24=10
#25=15
#26#=-10
#18=2

 Macro Call > Definitions

www.cncdata.co.uk 31

After a G65, a P (program number) must be specified, this program is the macro
program needed. When repetitions are required, a L must be specified.
Any other information on a G65 line is passed into the macro program as
variables. This is what we call an argument. The information passed is the
argument.

Two types of argument specification are available. Argument specification 1 uses
letters other than G, L, O, N, and P once each.
Argument specification 2 uses A, B, and C once each and also uses I, J, and K
up to ten times. The type of argument specification is determined automatically
according to the letters used. See the manual B-63534 for further details.

Address Variable
Number Address Variable

Number Address Variable
Number

A #1 I #4 T #20
B #2 J #5 U #21
C #3 K #6 V #22
D #7 M #13 W #23
E #8 Q #17 X #24
F #9 R #18 Y #25
H #11 S #19 Z #26

• Addresses G, L, N, O, and P cannot be used in arguments.
• Addresses that need not be specified can be omitted. Local variables

corresponding to an omitted address are set to null.
• Addresses do not need to be specified alphabetically. They conform

to word address format.
I, J, and K need to be specified alphabetically, however.

Simple Call (G65) When G65 is specified, the custom macro
specified at address P is called. Data (argument)
can be passed to the custom macro program.

G65 Pp Ln
 P: Number of the program to call
 L: Repetition count

O0001;
 :
G65 P9010 L2 A1 B2;
 :
M30;

O9010;
#3=#1+#2;
IF[#3GT360]GOTO99;
G0 G54 X10;
M99;

 Macro Call > Simple Call

www.cncdata.co.uk 32

Calls can be nested to a depth of four levels including simple calls (G65) and
modal calls (G66). This does not include subprogram calls (M98).

• Local variables from level 0 to 4 are provided for nesting.
• The level of the main program is 0.
• Each time a macro is called (with G65 or G66), the local variable level

is incremented by one. The values of the local variables at the previous
level are saved in the CNC.

• When M99 is executed in a macro program, control returns to the
calling program. At that time, the local variable level is decremented
by one; the values of the local variables saved when the macro was
called are restored.

O0001;
 :
#1=1;
G65 P2 A2;
 :
 :
M30;

O0002;
 :
(#1=2);
G65 P3 A3;
 :
 :
M99;

O0003;
 :
(#1=3);
G65 P4 A4;
 :
 :
M99;

O0004;
 :
(#1=4);
G65 P5 A5;
 :
 :
M99;

O0005;
 :
(#1=5);
 :
 :
 :
M99;

Main Program
Level 0

Macro
Level 1

Macro
Level 2

Macro
Level 3

Macro
Level 4

 Macro Call > Rules and Limitations

www.cncdata.co.uk 33

Modal Call (G66)

• After G66, specify at address P a program number subject to a modal
call.

• When a number of repetitions is required, a number from 1 to 9999 can
be specified at address L.

• As with a simple call (G65), data passed to a macro program is
specified in arguments.
When a G67 code is specified, modal macro calls are no longer performed
in subsequent blocks.

• Calls can be nested to a depth of four levels including simple calls (G65)
and modal calls (G66). This does not include subprogram calls (M98).

• Modal calls can be nested by specifying another G66 code during a modal
call.

Once G66 is issued to specify a modal call a macro
is called after a block specifying movement along
axes is executed. This continues until G67 is
issued to cancel a modal call.

G66 Pp Ln
 P: Number of the program to call
 L: Repetition count

O0001;
 :
G66 P9010 L2 A1 B2;
G00 X100.;
Y300.
M30;

O9010;
G00 Z-#1
G01 Z-#2

M99;

 Macro Call > Modal Call

www.cncdata.co.uk 34

By setting a G code number from 1 to 9999 used to call a custom macro program
(O9010 to O9019) in the corresponding parameter (N0.6050 to No.6059), the
macro program can be called in the same way as with G65.
For example, when a parameter is set so that macro program O9010 can
be called with G81, a user–specific cycle created using a custom macro
can be called without modifying the machining program.

The following table shows the correspondence between program number and
parameter. If for example your macro program is O9010, enter the value of the G
code you want in parameter 6050. I.E if you want G125 to open O9010 then 6050
must be 125.

Program Number Parameter Number
O9010 6050
O9011 6051
O9012 6052
O9013 6053
O9014 6054
O9015 6055
O9016 6056
O9017 6057
O9018 6058
O9019 6059

Macro Call Using
G Code

By setting a G code number used to call a macro
program in a parameter, the macro program can be
called in the same way as for a simple call (G65).
By setting parameter 6050 to 100, G65 Pn is now
replaced by G100

G65 Pp = G100

O0001;
 :
G100 L2 A1 B2;
 :
M30;

O9010;
#3=#1+#2;
IF[#3GT360]GOTO99;
G0 G54 X10;
M99;

 Macro Call > G Code

www.cncdata.co.uk 35

By setting an M code number from 1 to 99999999 used to call a custom macro
program (9020 to 9029) in the corresponding parameter (No.6080 to No.6089),
the macro program can be called in the same way as with G65.

Program Number Parameter Number
O9020 6080
O9021 6081
O9022 6082
O9023 6083
O9024 6084
O9025 6085
O9026 6086
O9027 6087
O9028 6088
O9029 6089

Macro Call Using
M Code

By setting an M code number used to call a macro
program in a parameter, the macro program can be
called in the same way as for a simple call (G65).
By setting parameter 6080 to 100, G65 Pn is now
replaced by M100

G65 Pp = M100

O0001;
 :
M100 L2 A1 B2;
 :
M30;

O9020;
#3=#1+#2;
IF[#3GT360]GOTO99;
G0 G54 X10;
M99;

 Macro Call > M Code

www.cncdata.co.uk 36

By setting an M code number from 1 to 99999999 used to call a subprogram in a
parameter (No.6071 to No. 6079), the corresponding custom macro program
(O9001 to O9009) can be called in the same way as with M98.

Program Number Parameter Number
O9001 6071
O9002 6072
O9003 6073
O9004 6074
O9005 6075
O9006 6076
O9007 6077
O9008 6078
O9009 6079

Subprogram Call
Using M Code

By setting an M code number used to call a
subprogram (macro program) in a parameter, the
macro program can be called in the same way as
with a subprogram call (M98).
By setting parameter 6071 to 100, M98 Pn is now
replaced by M100

M98 Pp = M100

O0001;
 :
M100;
 :
M30;

O9001;

M99;

 Macro Call > Sub Call

www.cncdata.co.uk 37

Joint Exercise

Scenario
You have a customer that wants you to machine circular holes into a square
billet. Problem is there are over 50 variations of this job. All different hole sizes,
depths and centre points.

Process

1. Move the tool to centre point
2. Move the tool down into the job
3. Interpolate out several times until diameter is met
4. Return tool to the centre point
5. Repeat steps 2 and 3 until depth and diameter is met.

Now we have to think about every possibilty and options available to us, to come
up with the best method. Here are a few things to think about:

• Where is the datum point going to be?
• Absolute or Incremental?
• Climb milling/direction?
• What letters to use on the Macro call?
• What information shall we require?
• Cutter compensation, yes/no?
• What error checks can we make?
• What G code to create?
• What material is the component?
• What variables shall we use, #100-#149 or #500-#531?

It’ always a good idea to have a pen and paper to hand to make notes on all of
the above when you’re writing Macro B programs.

 Exercises > Joint

www.cncdata.co.uk 38

Using the joint the joint exercise just completed, we need to make the macro
machine to the correct sizes specified. Ensuring the macro doesn’t cut oversize,
radially or in depth. We also need to put in place measures to prevent the macro
running without all the necessary information. For example if the user forgets to
input the diameter of te circle, then the macro cannot run. This macro should run
with G100.

 Exercises > Exercise 1

www.cncdata.co.uk 39

Scenario
You have a customer that wants you to create a G-Code to enable him to drill
various PCD’s. These comes with various depths, diameters and the amount of
holes vary.

Process
1. Move the tool to the centre point
2. Using Trigonometry calculate hole position 1
3. Drill the hole
4. Using a WHILE statement repeat steps 2 & 3 until all holes are drilled.

 Exercises > Exercise 2

www.cncdata.co.uk 40

Scenario
We have just received an order for several thousand components. Each
component has a raised square face on it. There are ten different types of
component, where features such as the height or square size of the component
differ. Rather than write ten different NC programs, we can write one Macro
program instead.

Xsq

X

 X

 X

 Exercises > Exercise 3

www.cncdata.co.uk 41

Scenario

You have just written several macro programs on a cylindrical grinder. All of
these programs use the offsets of Tool 1, as there is only one wheel and the
datum’s positions on G54. If the operator sets any other offsets then your macro
has a problem. The control has 300 tool offsets and 6 work piece offsets. Again if
the operator sets any offset other than G54, your macro has a problem. So we
have to create a check program to make sure no unnecessary information is set,
for tool length, tool radius and work pieces. Also if the external offset is, display a
message so the operator is aware the EXT offset is active.

 Exercises > Exercise 4

www.cncdata.co.uk 42

Scenario

Thread milling at your place of work is a common operation. Currently for every
cycle a new helical interpolation program is written, consuming a lot of time. Your
task is to create a cycle for thread milling, using G184 to call up the macro; the
G180 line should look similar to a G84 line. Once the tool enters the component,
it must not be stopped, Be sure to rad on and rad off.

 Exercises > Exercise 5

www.cncdata.co.uk 43

Scenario
You have a customer that wants you to machine elliptical bosses into a square
billet. Problem is there are over 20 variations of this job. All different major and
minor diameters and some are not complete ellipses, i.e start at 90 degrees and
finish at 180 degrees.
Process
1. Move the tool to centre point
2. Move the tool down into the job
3. Interpolate (varying radiuses throughout) out several times until diameter
is met
4. Return tool to the centre point
5. Repeat steps 2 and 3 until depth and diameter is met.

 Exercises > Exercise 6

www.cncdata.co.uk 44

Variable Description Variable Description
#1 A #119 Common Variable
#2 B #120 Common Variable
#3 C #121 Common Variable
#4 I #122 Common Variable
#5 J #123 Common Variable
#6 K #124 Common Variable
#7 D #125 Common Variable
#8 E #126 Common Variable
#9 F #127 Common Variable

#10 #128 Common Variable
#11 H #129 Common Variable
#12 #130 Common Variable
#13 M #131 Common Variable
#14 #132 Common Variable
#15 #133 Common Variable
#16 #134 Common Variable
#17 Q #135 Common Variable
#18 R #136 Common Variable
#19 S #137 Common Variable
#20 T #138 Common Variable
#21 U #139 Common Variable
#22 V #140 Common Variable
#23 W #141 Common Variable
#24 X #142 Common Variable
#25 Y #143 Common Variable
#26 Z #144 Common Variable

 #145 Common Variable
#100 Common Variable #146 Common Variable
#101 Common Variable #147 Common Variable
#102 Common Variable #148 Common Variable
#103 Common Variable #149 Common Variable
#104 Common Variable
#105 Common Variable
#106 Common Variable
#107 Common Variable
#108 Common Variable All of these are variables are cleared either on

reset, at the end of the program or at power off. #109 Common Variable
#110 Common Variable
#111 Common Variable
#112 Common Variable
#113 Common Variable
#114 Common Variable
#115 Common Variable
#116 Common Variable
#117 Common Variable
#118 Common Variable

 Variable List > Variable List

www.cncdata.co.uk 45

Variable Description Variable Description
#500 Common Variable #1013 PMC Bit Read
#501 Common Variable #1014 PMC Bit Read
#502 Common Variable #1015 PMC Bit Read
#503 Common Variable #1032 PMC Word Read
#504 Common Variable
#505 Common Variable #1100 PMC Bit Write
#506 Common Variable #1101 PMC Bit Write
#507 Common Variable #1102 PMC Bit Write
#508 Common Variable #1103 PMC Bit Write
#509 Common Variable #1104 PMC Bit Write
#510 Common Variable #1105 PMC Bit Write
#511 Common Variable #1106 PMC Bit Write
#512 Common Variable #1107 PMC Bit Write
#513 Common Variable #1108 PMC Bit Write
#514 Common Variable #1109 PMC Bit Write
#515 Common Variable #1110 PMC Bit Write
#516 Common Variable #1111 PMC Bit Write
#517 Common Variable #1112 PMC Bit Write
#518 Common Variable #1113 PMC Bit Write
#519 Common Variable #1114 PMC Bit Write
#520 Common Variable #1115 PMC Bit Write
#521 Common Variable #1132 PMC Word Write
#522 Common Variable #1133 PMC Double Word Write
#523 Common Variable
#524 Common Variable
#525 Common Variable
#526 Common Variable
#527 Common Variable
#528 Common Variable
#529 Common Variable
#530 Common Variable
#531 Common Variable

#1000 PMC Bit Read
#1001 PMC Bit Read
#1002 PMC Bit Read
#1003 PMC Bit Read
#1004 PMC Bit Read
#1005 PMC Bit Read
#1006 PMC Bit Read
#1007 PMC Bit Read
#1008 PMC Bit Read
#1009 PMC Bit Read
#1010 PMC Bit Read
#1011 PMC Bit Read
#1012 PMC Bit Read

 Variable List > Variable List

www.cncdata.co.uk 46

Variable Description Variable Description
#3000 Alarm & Stop #4119 Modal S Code
#3001 Timer (m/s) #4120 Modal T Code
#3002 Timer (hourly) #4130 Modal P Code
#3003 Single Block
#3004 Feed control #5001 Workpiece Position 1st Axis (B)
#3005 : :
#3006 Operator Message #5008 Workpiece Position 8th Axis (B)
#3007 #5021 Machine Position 1st Axis
#3008 : :
#3009 #5028 Machine Position 8th Axis
#3010 #5041 Workpiece Position 1st Axis (C)
#3011 Date : :
#3012 Time #5048 Workpiece Position 8th Axis (C)

 #5061 Skip Signal Position 1st Axis
#3901 Machine Parts : :
#3902 Required Parts #5068 Skip Signal Position 8th Axis

#4001 Modal Group 1 #5201 1st Axis EXT Zero Offset
#4002 Modal Group 2 : :
#4003 Modal Group 3 #5208 8th Axis EXT Zero Offset
#4004 Modal Group 4 #5221 1st Axis G54 Zero Offset
#4005 Modal Group 5 : :
#4006 Modal Group 6 #5228 8th Axis G54 Zero Offset
#4007 Modal Group 7 #5241 1st Axis G55 Zero Offset
#4008 Modal Group 8 : :
#4009 Modal Group 9 #5248 8th Axis G55 Zero Offset
#4010 Modal Group 10 #5261 1st Axis G56 Zero Offset
#4011 Modal Group 11 : :
#4012 Modal Group 12 #5268 8th Axis G56 Zero Offset
#4013 Modal Group 13 #5281 1st Axis G57 Zero Offset
#4014 Modal Group 14 : :
#4015 Modal Group 15 #5288 8th Axis G57 Zero Offset
#4016 Modal Group 16 #5301 1st Axis G58 Zero Offset
#4017 Modal Group 17 : :
#4018 Modal Group 18 #5308 8th Axis G58 Zero Offset
#4019 Modal Group 19 #5321 1st Axis G59 Zero Offset
#4020 Modal Group 20 : :
#4021 Modal Group 21 #5328 8th Axis G59 Zero Offset
#4022 Modal Group 22
#4102 Modal B Code
#4107 Modal D Code
#4109 Modal F Code
#4111 Modal H Code
#4113 Modal M Code
#4114 Modal Sequence No
#4115 Modal Program No

 Variable List > Variable List

	Macro B FP
	Macro B[no fp]
	Note
	When an undefined variable is quoted, the address itself is also ignored
	When < vacant > is the same as 0 except when replaced by < vacant>
	System Variables for Tool Compensation Memory A
	System Variables for Tool Compensation Memory B
	System Variables for Tool Compensation Memory C
	Round Function - #i=ROUND[#j];
	Differences from NC Statements
	NC statements that have the same property as macro statements
	Macro Call
	/
	Scenario
	Scenario
	Process

